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I. INTRODUCTION 
In many forms of chemical power plants the fuel is usually introduced into the reactor in the form 
of a spray. The subsequent processes of droplet vaporization, fuel (in both liquid and gas 
phases)--air mixing, and combustion usually take place in confined spaces. Hence an analysis of 
the motion of the droplets, resulting from their injection inertia and the subsequent interaction 
with aerodynamic forces, is essential to understanding the wall impingement of droplets, as well 
as the degree of mixedness between the droplets and the gas during this initial mode of coarse 
mixing. 

Miesse (1954) analyzed the one-dimensional motion of a droplet by using the so-called D2-1aw 
(see, for example, Williams 1965) for the vaporization rate and Stokes law for the drag force. 
Waldman & Reinecke (1971), and Jaffe (1973), used a constant drag-coefficient, CD, in analyzing 
droplet dynamics in hypersonic shock layers; hence implicitly assuming that the droplet 
Reynolds number, Re, is very large. In many practical situations, however, Re is neither so small 
that Stokes law is rigorously applicable, nor can it be very large without the droplet becoming 
unstable and disintegrating. Furthermore, in the presence of convective gas motion, the droplet 
vaporization rate is expected to exceed the value given by the D2-1aw, which assumes a stagnant 
atmosphere for the vaporization process. 

These non-ideal behaviors were realistically accounted for in a recent theory by Law (1975a) 
for spray vaporization in one-dimensional flows. A similar analysis, with a refined drag-coefficient 
expression, is extended here to obtain closed-form solutions for the motion of a single droplet 
undergoing evaporation, with and without gas-phase reactions, in a constant cross flow. 

2. GOVERNING EQUATIONS 

The problem under consideration is the motion resulting from injecting a droplet with initial 
diameter Do, velocity u~o and voo in the x- and y-directions, respectively, into a gas stream with 
constant uo in the x-direction. It is also assumed that the evaporation and motion of the droplet 
do not affect any of the properties of the gas stream. 

The rate of decrease of the droplet size under forced convection is given by Williams (1965), 

where 

d/)2/dt = - 2kH(Re, Sc) 

H(Re,  Sc) = 1 + 0.276Sc 1/3Re 1/2 

[11 

[21 

is the Frossling correction term (Williams 1965) that accounts for the increase in evaporation rate 
due to forced convection, Sc = ~/(poSo) is the Schmidt number and 

Re = [Dopd~ol[(u~ - u . y  + v.']";D [31 
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is the droplet Reynolds number. Furthermore L) = D/Do, k = 4M/(Do2po), M = p68o In (1 + B) is 
a measure of the evaporation rate, and the transfer number B is ( C J L ) ( T ~ - T o )  or 
[iYo~Q + C o ( T o -  To)]/L for vaporization without or with gas-phase reactions, respectively 
(Williams 1965). In the above t is the time, p is the density, T is the temperature,/~ is the 
viscosity coefficient, 8 is the binary-diffusion coefficient, C is the specific heat, i is the 
stoichiometric fuel-oxidizer ratio, YoG is the oxidizer mass fraction in the gas stream, L is the 
specific latent heat of vaporization, Q is the chemical heat release per unit mass of fuel 
consumed; and the subscripts o, p, and G respectively designate the initial state, the droplet, and 

the gas. 
The accelerations the droplet experiences in the x- and y-directions are respectively 

and 

duo I dt = (3/zo 14Oo )( CoRe I D2)( uo - up), 

d vo/d t = - (3/~ 14po )(CoRe I D 2) vo, 

[4] 

[5] 

where the drag coefficient Co is given by the form proposed by Law (1975a) 

Ca = K (Sc) x H(Re, Sc) x G(B)IRe. [6] 

In [6] the function G(B) accounts for the change in drag due to the outward mass-transfer at 
the droplet surface. Various expressions for G(B) have been suggested; in particular, Spalding 

(1959) used 
G(B) = B- '  In (1 + B), [7] 

whereas Eisenklam et al. (1967) preferred 

G(B) = (1 + B)- ' ,  [8] 

although the validity of neither of them has been unassailably established (Natarajan 1973). 
However, since B is a constant during droplet motion, we shall leave G(B) as an unspecified 
constant function in the formulation. It may also be noted that G(B) -- 1 in the limit of B <~ 1 for 
slow vaporization. 

The functions K(Sc)  and H(Re, Sc) are inserted in [6] so that for a given Sc and for 
G(B) = l, a value for K(Sc)  is determined that enables the resulting Co to closely correlate the 

standard experimental drag curve for solid spheres. The function 

K(Sc) = 23Sc -°~4 [9] 

was found to meet the above purpose for 0.5 < Sc < 10 and Re < 200 (figure 1). It is seldom 
necessary to investigate the behavior of the system for larger Reynolds numbers, since for most 
liquids which are not too viscous the droplets would then become unstable and tend to break up. 
Figure 1 shows that the present drag-coefficient expression satisfactorily correlates the standard 
drag curve for the range of Sc illustrated, implying that any uncertainty in the selection of Sc will 
not significantly affect the value of the calculated drag-coefficient. As Re approaches 0, the 
present correlation fails to asymptote to the Stokes expression Co = 24/Re. The difference, 
however, is small and hardly important since under such situations the droplet conforms to the 
gas motion almost instantly. Finally, it should be emphasized that the primary reason for adopting 
the function H(Sc, Re), in preference to other well-known correction factors to the Stokes drag 
coefficient, is because its presence greatly facilitates the following mathematical analysis, such 
that further physical insight can be gained in delineating the various factors governing the droplet 

motion. 
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Figure 1. Comparison between experimental drag-coefficient and the present correlation. 

3. S O L U T I O N S  A N D  D I S C U S S I O N S  

Dividing [4] and [5] by Ill ,  the nonlinear term H(Re,  Sc) is eliminated and the following linear 

equations are obtained for up and v,, 

duo/d/)  2 = - (a/2)(ua - up)//~2, [10] 

dvo Id15 2 = (a 12)vp 10 2, [11] 

where a = (3 /16) /~K(Sc)G(B) /M.  Integrating [10] and [11], with the initial conditions that 

up = Uoo and vp = V,,o a t / 5  = 1, yields 

up = up +(upo - u6)L)* [121 

and 

vo = V.o3 []31 

The function H(Re,  Sc)  is now expressed in terms o f / 5  as 

H(Re, Sc) = 1 + ~)~,+,,),2, [14]  

where/3 = 0.276Sc '13 Reo '12. 

Equations [12] and [13] indicate that since up ~ uo, vo -o 0 only w h e n / 5  ~ 0, the droplet 

velocity is never in phase with the gas velocity. Therefore the penetration depth ymx attained by 
the droplet, when vo = 0, corresponds to the state of complete vaporization. 

An important parameter, a, is also identified. It represents the ratio of the effects of drag to 
the rate of evaporation; viz., [gGG(B)]/M. Hence for a '< 1 the droplet vaporizes so fast that it 
retains its initial velocity, the drag force having little influence on its motion. Only during the last 
stage of its lifetime, when the droplet size becomes very small, will the drag force dominate and 
the droplet quickly conform to the gas motion. For a -> 1 the reverse is true. The droplet quickly 
loses its inertia after injection and is almost in phase with the gas motion before much of its initial 
mass is vaporized. The rest of its lifetime is spent in vaporization and in a final, slight, adjustment 
to follow the gas motion. Equations [ 12] and [ 13] illustrate the above behavior by showing that for 
a "< I, / )  = --~ 1 for / ~  1 such that up --* Uoo and vp ~ Voo ; whereas for a -> 1, /)~ ~ 0 for 
(1 - / 9 )  ,~ 1 such that up ~ u~ and vo ~ 0. 

The above discussion also implies that for a slowly vaporizing droplet the analysis can be 
greatly simplified by first suppressing the vaporization process until the droplet velocity is 
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completely in phase with the gas, then allowing the droplet to vaporize in effectively a stagnant 
atmosphere. 

The droplet size can he related to the y-coordinate by using [11 and [13] and the identity 

d/dt = v~d/dy, [15] 

leading to 

where we have defined 

with 

and 

DUO 
Y = (2 + a)k ~P'(A)' [161 

L 
I t~ t (3+a) l ( l+a )  

(~)y(A) = 7)1 l+flA'  dA' [17] 

~ j~(I +a)12 

1/1 = 2(2 + a)/(1 + a). 

It may be noted that ~,(0) = 1 for ~ = 0. The penetration depth is now given by 

/)to 
ym~ = (2 + a)k ~,  (0). [181 

A similar derivation can be extended to the x-component of motion, giving 

(Uoo - u ~ ) ~ t ~  ~, 
x = (-~-4~j ~ , , [19] 

where 

l/lU G fAI ~t(3--a)l(l+a)ljf_~ ~r ePx(A)=(U,o_U6) dA' +~,(A). [20] 

The chamber length for complete droplet vaporization is then 

(U~o - uo ) ~i, x(O ~ xm~, = ~ ¥ ~ - ~  . . .  [21] 

When the initial Reynolds number, Reo, is not too large so that/~ < 1, then ~x(A) and ~,(A) 
can be expressed in terms of the Gauss hypergeometric series (Gradshteyn 1965), giving 

• ,(A) = F(1, v,; 1 + u , ; - ~ ) - A  ~,F(1, r,; 1 + v,; -~A), [22] 

vlUo ,fF(1 ~x(A)-cyp,(A)=(upo_uo)v2tA,. , l~2;l+p2;-[J)-A"2F(1, v2;l+p2,-[3A)} [23] 

where v2 = 4/(1 + a). 
It is of interest to compare the present penetration depth with that for a solid particle obeying 

Stokes law, which is given by 

(ym,~)sto~, = vooppDo2 / (181.~a ). [24] 
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Theratio of the depths, R = (ym~,)stokcJYm~,, is 

[ K(Sc) l[~tR~ + 32 In (1 + B)]~ 
R = t Jt . . . .  3ScK(S ) J" [251 

The deviation of the above ratio from unity is due to three factors. The first bracketed term 
accounts for the adjustments made in the Stokes law to conform to the standard drag curve for 
solid spheres. For ~ = 0 and by setting K(Sc) = 24, this term is 1. The second bracketed term 
accounts for the effects due to vaporization. The function G(B) is the correction for the drag 
coefficient due to evaporation, whereas the second term accounts for the continuous increase in 
the drag force, per unit mass, due to the diminishment of the droplet size. For solid spheres or for 
very slowly vaporizing droplets B = 0 and G(B) --- 1, hence the second bracketed term is approx. 
1. 

As an illustration, the ratio R is calculated for a heptane droplet with Do = 10 -5 cm and 
Vpo = 102 cm/sec, injected perpendicularly into a 1 atm air stream with Sc = 0.7. For To = 300°K 
and 500°K, B is found (Law 1975b) to be 0.143 and 1.33; [32 In (1 + B)]/[3ScK(Sc)] is 0.0495 and 
0.312; G(B), using [7], is 0.94 and 0.635; ~,(0) is 0.698 and 0.734; hence R is 1.43 and 1.30, 
respectively. The above figures confirm that at To = 300°K, since vaporization is very slow, 
G(B) = 0.94 ~ 1 and the droplet can be effectively treated as a solid sphere in computing its 
trajectory. This assumption, however, fails at To = 500°K. It may also be noted that at 
To = 500°K, whereas the rapid diminishment in the droplet size tends to significantly increase the 
drag force per unit mass, the drag reduction due to the enhanced mass-transfer rate at the droplet 
surface more than compensates for this increase so that the penetration depth is larger than for 
the case at To = 300°K. 
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